http://www.rtuonline.com

Total Printed Pages Roll No. : 2C7113 MCA (I Year) (Sem. II) (New Scheme) Examination, July - 2010 Operating System (MCA)

Time: 3 Hours1

[Maximum Marks : 80

[Min. Passing Marks: 32

Attempt overall five questions. All questions carry equal marks.

Use of following supporting material is permitted during examination. (Mentioned in form No. 205)

1. Nil

Nil

- Answer the following questions in one word and one line only:
 - (a) Every _____ generated by the CPU is divided into two parts: page number (P) and a page offset (d).
 - (b) The run-time mapping from virtual to physical addresses is done by a piece of hardware in the CPU, called the
 - The set of all logical addresses generated by a program form the _____ of a process.
 - (d) _____ shares characteristics with both hardware and software.
 - (e) The virtual memory manager manages memory in the windows-NT environment by using ____
 - What is meant by saying that a program is re-entrant?
 - What are the two file system types that windows-NT supports ?
 - What is meant by the statement that a process is in the BLOCKED state ?
 - Which low level scheduling scheme is best suited to interactive system ?
 - What is the state of the processor, when a process in waiting for some event to occur?

1×10=10

[Contd...

2C71131

[Contd...

Answer each part in maximum 50 words:

http://www.rtuonline.com

- (a) A typical page size is 4 k bytes. How many virtual pages would this imply given the virtual space approx 43×109 bytes? If each page table entry is 5 bytes. How much space is required for the whole page table?
- (b) Distinguish between deadlock and indefinite postponement. How do you prevent deadlocks?
- In a typical implementation, the password takes 5 character combinations of the 26 alphabets. Assuming that it takes 3 seconds to attempt a password, how much time will it take to guess the correct password in the worst case?
- (d) In a demand paging memory management system, usually there is a lower limit to the number of memory frame that must be made available to a running process. Give reasons for this.
- (e) State the essential differences between internal and external memory fragmentation. Which of this technique is used in a paging scheme?

 $3 \times 5 = 15$

Answer each part in maximum 150 words:

- (a) What are the differences between a multiprogramming operating system and a time-sharing operating system ?
- (b) What is thrashing? Explain and suggest one method to control thrashing.
- Prove that the shortest-job-first (SJF) algorithm gives the minimum average waiting time for a given set of jobs.
- What is a semaphore? How can the basic semaphore operations be implemented using "test-and-set" kind of instruction?
- Consider the following setup processes:

Process	Burst time	Priority
Pl	10	3
P2	1	1
P3	2	3
P4	}	4
P5	5	2

Calculate the turnaround time, waiting time for each of the scheduling FCFS, SJF algorithm.

 $4 \times 5 = 20$

http://www.rtuonline.com

4 (a) What is virtual memory? Explain demand paging. What are the advantages of demand paging?

10

- (b) Consider a distributed system with two sites A and B. Consider whether site A can distinguish among the following:
 - (i) B goes down.
 - (ii) The link between A and B goes down.
 - (iii) B is extremely overloaded and response time is 100 times longer than normal. What implications does your answer have for recovery in distributed systems?

10

5 'n' process share 'm' resource units, which can be reserved and released only one at a time. The maximum need of a process does not exceed m. and the sum of all maximum needs is less than m+n. Show that a deadlock cannot occur in the system?

15

OR

Consider the following sequence of memory references from a 460word program:

[10, 11, 104, 170, 73, 309, 185, 245, 246, 434, 458, 364]

- (i) Show the page reference string for this sequence assuming a page size of 100 words, with 200 words of primary memory available to the program.
- (ii) Compute the number of page faults assuming FIFO and LRU page replacement policies.

7+8=15

Hillian Arthur Berger

A LIVE OF THE PERSON OF THE PE