rtuonline.com

	Roll No.	Total No of Pages:4			
9	6E3109				
6E3109		ain & Back) Exam. May/June 2013 Electrical Engg. Modern Control Theory			
Time: 3 Hours Maximum Mark		Maximum Marks: 80			
		Min. Passing Marks: 24			
Instructi	ions to Candidates:				
car		cting one question from each unit. All questions agrams must be shown wherever necessary. Any assumed and stated clearly.			
Uni	its of quantities used/calculate	ed must be stated clearly.			

<u>UNIT – I</u>

(i)	Linearity			[3]
(ii)	Relaxedness		,	[3]
(iii)	Time Invariance		I	[3]

(iv) Causality [3]

(v) Linear vector space linear Independence [4]

<u>or</u>

Q.1. (a) Derive the solution of homogeneous state equation. [8]

[6E3109] Page 1 of 4 [9920]

rtuonline.com

rtuonline.com

rtuonline.com

rtuonline.com

(b) Consider the homogeneous equation.

$$AX = 0$$

Where

$$A = \begin{pmatrix} 0 & 1 & 1 & 2 & -1 \\ 1 & 2 & 3 & 4 & -1 \\ 2 & 0 & 2 & 0 & 2 \end{pmatrix}$$

Find the linearly independent solution of this equation.

[8]

[8]

<u>UNIT – II</u>

- Q.2. (a) What are the advantages and disadvantages of state space analysis.
 - (b) Draw the free body diagram and write the differential equation of the mechanical system shown in figure 1 [8]

OR

- Q.2. (a) What are state variables? Give the advantages of modern control theory over conventional control theory. [8]
 - b) For the system shown in figure 2, choose the state variable as v_1 (t) and v_2 (t) and write down the state equation.

Page 2 of 4

[6E3109]

rtuonline.com

rtuonline.com

[9920]

[8]

Q.3. (a)

Q.3. (a)

Q.4. (a)

rtuonline.com

(b)

[8]

[8]

[8]

Explain the procedure to convert a given state model into signal flow graph. [8] Obtain the transfer function if state model is given by. $\begin{bmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \mathbf{1} \\ -\mathbf{2} & -\mathbf{3} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ \mathbf{i} \end{bmatrix} \mathbf{u}$

 $\mathbf{Y} = \begin{bmatrix} \mathbf{1} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}$

OR Explain cascade and parallel decomposition in brief. [6]

Construct the state model in Jordan's canonical form for a system whose transfer [10]

Define diagonalization? Explain its importance in modern control theory.

UNIT - III

- (b) Define the following:
- Eigen values (i)

(ii) Eigen vectors State of a system (iv) State transition matrix (ii)

Page 3 of 4 [9920] [6E3109]

rtuonline.com

[8]

[8]

[8]

[8]

[8]

[8]

[9920]

rtuonline.com

rtuonline.com

rtuonline.com

Q.5. (a)

Q.5. (a)

6E3109]

rtuonline.com

_	_	
	=	
ζ	\bar{z}	
	Ξ	•
	2	

OR

State the duality between controllability and Observability. Q.4. (a)

Consider the state equation. (b)

$$\left[\dot{x}_{1}(t)\right]_{=}\left[0\right]$$

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$$

$$\left[\begin{array}{c} x_2(t) \end{array}\right]^{=} \left[\begin{array}{c} 0 \\ -2 \end{array}\right]$$

Obtain the state transition matrix.

domain. Find the z- transform of {u_n} where

$$\left\{u_{n}\right\} = \begin{cases} 4^{n} & \text{if } n < 0\\ 3^{n} & \text{if } n \geq 0 \end{cases}$$

Find the z- transform of the following.

(ii) e^{-at} sin ωt (i) $\frac{a}{(s+a)^2}$

By using the property of z- transform.

What are the properties of z- transform? Find the relationship between z and s

OR

What is sampling process? Write short note on digital PID controller.

Page 4 of 4