rtuonline.com

rtuonline.com

,	Roll No Total No of	Pages: 4
03	5E5103	
5E5103	B. Tech. V Sem. (Main / Back) Exam., Dec. 201	14
ES	Computer Science & Engineering	
N	5CS3A Telecommunication Fundamentals Common with CS IT	
	Common with CS 11	
Fime: 3	Hours Maximum	Marks: 80
	Min. Passing	, Marks: 24
nstructio	ions to Candidates:	
Atte	empt any five questions, selecting one question from each unit . A	All questions
carı	ry equal marks. Schematic diagrams must be shown wherever nec	essary. Any
data	a you feel missing suitably be assumed and stated clearly.	
Uni	its of quantities used/calculated must be stated clearly.	
Use	e of following supporting material is permitted during examination	n.
(Me	entioned in form No. 205)	
. <u>NIL</u>	2. <u>NIL</u>	
	<u>UNIT – I</u>	
Q. 1 (a)	Draw the following reference models used in computer communication	on-
	(i) OSI / ISO Model	
	(ii) TCP/IP Model	
	Also give the key difference in both above models.	[3+3+2]

noise ratio is 24 dB, compute how many signaling levels are required to achieve the reachable data rates. Also calculate the channel capacity. [3]

Page 1 of 4

Suppose a spectrum of a channel is between 3 MHz and 4 MHz and signal to

[10020]

(b)

[5E5103]

[5]

[3]

rtuonline.com

- e) What are various transmission impairments? Explain in brief.
 - <u>OR</u>
- (a) Explain the working of Stop-and-Wait protocol with the help of suitable diagrams. [8]
- (b) Distinguish between Synchronous and Asynchronous communication systems.[5]
- (c) Sketch the waveforms for each of the following code for the bit sequence
- (i) Manchester coding

11001101

- (ii) Bipolar NRZ
- (iii) Unipolar RZ

<u>UNIT – II</u>

Q. 2 (a) Consider a (7, 4) block code generated by [7]

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & \vdots & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & \vdots & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & \vdots & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & \vdots & 0 & 1 & 1 \end{bmatrix}$$

Find out the error vector in data word 0010000.

rtuonline.com

- (b) Explain frame structure of HDLC Protocol and compare with PPP. [7]
- (c) Give the functions of Media Access Control Sublayers. [2]

OR

(a) Generate the Hamming codeword for ASCII character 'S' = 1010101. Assume odd parity for the Hamming code. [7]

[5E5103] Page 2 of 4 [10020]

	(b)	Explain Pure ALOHA and Slotted ALOHA. Give relationship in to		
		throughput.	[7]	
	(c)	Give the applications of CSMA/CD.	[2]	
		UNIT – III		
rtuonline.com	Q. 3 (a)	What are the various effects of Hidden node and Exposed node problem in		
		communication?	[4]	
	. (b)	How can Virtual LANs be more efficient than normal LAN? Exp	lain in detail	
		using suitable diagram.	[7]	
	(c)	Explain Transparent and Learning Bridge.	[5]	
		<u>OR</u>		
	(a)	Draw and Explain 802.11 architecture & protocol stack.	[8]	
	(b)	Explain Protocol stack for Bluetooth Architecture.	[8]	
		<u>UNIT – IV</u>		
rtuonline.com	Q. 4 (a)	Why do we require switching in communication? Explain Sign	al stage and	
		Multistage switches.	[6]	
	(b)	Design a 3 stage 200×200 switch (N = 200) with $k = 4$ and $n = 20$. A	Also compare	
		number of cross points with single stage switch.	[4]	
	(c)	Draw and explain TDMA frame structure and burst structure.	[6]	
	<u>OR</u>			
	(a)	Describe ADSL and slip rate in terrestrial network.	[8]	
	(b)	If a normal GSM time slot consists of 6 trailing bits, 8.25 guard bit	s, 26 training	
		bits and 2 traffic bursts of 58 bits of data, find the frame efficiency.	[6]	
	[5E5103]	Page 3 of 4	[10020]	

rtuonline.com

Draw Analog Hierarchy of FDM.

[2]

UNIT - V

- Q. 5 (a) Find the processing gain of the system when data rate is 7.8 Kbps and the spread rate or chip rate is 9.6 Mbps. (Use BPSK technique for modulation). [4]
 - Discuss the concept of Spread spectrum used in communication and explain the working of DSSS transmitter and receiver using the suitable block diagram.
 - (c) Explain Forward and Reverse CDMA in detail. [6]

<u>OR</u>

Write short notes on any three-

- [3x3=9]
- (i) M-sequence

(a)

- **Hand-Off Process**
- (iii) Gold Sequence
- (iv) IMT-2000
- Explain the direct sequence and frequency spread spectrum with their performance measurement. [4]
- Explain the generation of PN sequence. [3]

[5E5103] Page 4 of 4 [10020]