| - | Rall No. | | Total No. of Pages : 7 | |----------|--|---|--| | 64 | | 3E1641 | | | | Applied Elect. & Inst. 1 | Engg. | nination, December - 2017 (EC, EIC, EE, EX, AI, BM) | | Time : | 3 Hours | | Maximum Marks : 80
Min. Passing Marks : 26 | | she as | All Questions carry equa
nown wherever necessary.
ssumed and stated clearl | l marks. Schen
Any data you
y. Units of qua
be stated clea | feel missing suitably be
antities used / calculated
rly. | | 1. | Nil | 2 | Nil | | | , | UNIT - I | | | 1 _ (a) | What is the position of
How does its position of
(i) donor and
(ii) acceptors are added | nange when: | in an intrinsic semiconductor? | | _ | -
- | | 5 | | 3E1641] | 1 | 1 | [P.T.O. | - (b) A sample of Ge is doped to the extent of 10^{14} donor atoms/cm³ and 5×10^{13} acceptor atoms/cm³ at 300 K, the resistivity of intrinsic Ge is $60 \Omega cm$. If the applied electric field is 2 V/cm, find the total conduction current density. Assume $\mu_p/\mu_n = 1/2$ and $n_i = 2.5 \times 10^{13} / cm^3$ at 300 K. - (c) What is mass action for the carrier concentration? 8 3 OR - 1 (a) What are "Hall effect" and "Hall field"? Explain briefly the physical origin of the Hall effect. - (b) A rectangular semiconductor specimen, 2 mm wide and 1 mm thick, gives a Hall coefficient of 10⁻² m³/c. When a current of 1 mA is passed through the sample, a Hall voltage of 1 mV is developed find the magnetic field and the Hall field. http://www.rtuonline.com 8 ## UNIT - II In the circuit of figure the Zener diode is non ideal, having a knee voltage $V_{zo} = 9V$ and a dynamic resistance $r_z = 5\Omega$. If the supply voltage V_s varies from 15 to 30V, determine the range of variation of the output voltage V_o , also comment on the result. 8 3E1641 | 4 - What is unijunction transistor? Give the equivalent circuit. (b) (i) - Draw and explain its current voltage characteristics. (ii) 8 OR The voltage waveform v_i of Figure (a) is applied to the input of the circuit 2 (a) of Figure (b). Show the output voltage V_o waveform and mark the voltage levels. Find the PIV of the diode, assumed to be ideal. 8 Draw the circuit diagram of a fullwave voltage doubler and explain its operation, how can we construct a voltage trippler? http://www.rtuonline.com 8 { P.T.O. ### UNIT - III 3 (a) Draw the circuit diagram of an emitter follower. Why it is called an emitter follower? Obtain expression for the current gain, input resistance voltage gain and output resistance. 12 (b) A transistor is operating in the CE mode calculate V_{CE} if $\beta = 125$, $V_{BE} = 0.6 V$. 3 (a) In the circuit of figure shown below, $\beta = 99$ and $V_{BE} = 0.7V$. Calculate the quiescent values of I_B , I_{C} , I_E and V_{CE} . If β is increases by 20% what is the corresponding change in I_C ? 9 3E1641 | (b) Draw and label the low frequency h-equivalent of CE amplifier and obtain voltage gain. 7 ## **UNIT - IV** 4 (a) Derive an expression for the small signal voltage gain of a common source FET amplifier. 8 (b) A n-channel JFET has $I_{DSS} = 12$ mA and Pinch off voltage $V_P = -4V$. Find the drain current for $V_{GS} = -2V$. If the transconductance g_{mo} of a JFET with the same I_{DSS} at $V_{GS} = 0$ is 4 millimho, find the pinch off voltage. 8 #### OR 4 (a) Sketch the structure of n-channel depletion type MOSFET. Explain how the depletion region is produced in the channel. Can a depletion MOSFET work in the enhancement mode? 8 (b) An n-channel enhancement mode MOSFET, biased as shown in Fig. operates in the active region. The given parameters are V_T = 2V and K = 0.5 mA/V². Calculate I_D, V_{GS} and V_{DS} verify that the operation is indeed in the active region. 8 #### UNIT - V 5 (a) An RC coupled amplifier employs two identical transistors, each having $h_{fe} = 100$, $h_{ie} = 2k\Omega$ and $C_{of} = 2PF$. The coupling capacitor has a capacitance $C = 0.4 \ \mu F$. The load resistance for each transistor is $R_L = 8 \ k\Omega$. The wiring capacitance $C_W = 10 \ PF$, calculate the lower and upper half power frequencies. 8 (b) Obtain an expression for the voltage gain of an R-C coupled amplifier in the mid, low and high frequency ranges. 8 OR 3E1641 | 6 5 (a) Draw the circuit diagram of a common source in channel JFET amplifier. Discuss its small signal operation. 10 (b) What is the Darlington connection, compare between an emitter follower and a darlington pair ? 6 3E1641] 7 [16000]