-	Rall No.		Total No. of Pages : 7
64		3E1641	
	Applied Elect. & Inst. 1	Engg.	nination, December - 2017 (EC, EIC, EE, EX, AI, BM)
Time :	3 Hours		Maximum Marks : 80 Min. Passing Marks : 26
she as	All Questions carry equa nown wherever necessary. ssumed and stated clearl	l marks. Schen Any data you y. Units of qua be stated clea	feel missing suitably be antities used / calculated rly.
1.	Nil	2	Nil
	,	UNIT - I	
1 _ (a)	What is the position of How does its position of (i) donor and (ii) acceptors are added	nange when:	in an intrinsic semiconductor?
_	- -		5
3E1641]	1	1	[P.T.O.

- (b) A sample of Ge is doped to the extent of 10^{14} donor atoms/cm³ and 5×10^{13} acceptor atoms/cm³ at 300 K, the resistivity of intrinsic Ge is $60 \Omega cm$. If the applied electric field is 2 V/cm, find the total conduction current density. Assume $\mu_p/\mu_n = 1/2$ and $n_i = 2.5 \times 10^{13} / cm^3$ at 300 K.
- (c) What is mass action for the carrier concentration?

8

3

OR

- 1 (a) What are "Hall effect" and "Hall field"? Explain briefly the physical origin of the Hall effect.
 - (b) A rectangular semiconductor specimen, 2 mm wide and 1 mm thick, gives a Hall coefficient of 10⁻² m³/c. When a current of 1 mA is passed through the sample, a Hall voltage of 1 mV is developed find the magnetic field and the Hall field. http://www.rtuonline.com

8

UNIT - II

In the circuit of figure the Zener diode is non ideal, having a knee voltage $V_{zo} = 9V$ and a dynamic resistance $r_z = 5\Omega$. If the supply voltage V_s varies from 15 to 30V, determine the range of variation of the output voltage V_o , also comment on the result.

8

3E1641 |

4

- What is unijunction transistor? Give the equivalent circuit. (b) (i)
 - Draw and explain its current voltage characteristics. (ii)

8

OR

The voltage waveform v_i of Figure (a) is applied to the input of the circuit 2 (a) of Figure (b). Show the output voltage V_o waveform and mark the voltage levels.

Find the PIV of the diode, assumed to be ideal.

8

Draw the circuit diagram of a fullwave voltage doubler and explain its operation, how can we construct a voltage trippler?

http://www.rtuonline.com

8

{ P.T.O.

UNIT - III

3 (a) Draw the circuit diagram of an emitter follower. Why it is called an emitter follower? Obtain expression for the current gain, input resistance voltage gain and output resistance.

12

(b) A transistor is operating in the CE mode calculate V_{CE} if $\beta = 125$, $V_{BE} = 0.6 V$.

3 (a) In the circuit of figure shown below, $\beta = 99$ and $V_{BE} = 0.7V$. Calculate the quiescent values of I_B , I_{C} , I_E and V_{CE} . If β is increases by 20% what is the corresponding change in I_C ?

9

3E1641 |

(b) Draw and label the low frequency h-equivalent of CE amplifier and obtain voltage gain.

7

UNIT - IV

4 (a) Derive an expression for the small signal voltage gain of a common source FET amplifier.

8

(b) A n-channel JFET has $I_{DSS} = 12$ mA and Pinch off voltage $V_P = -4V$. Find the drain current for $V_{GS} = -2V$. If the transconductance g_{mo} of a JFET with the same I_{DSS} at $V_{GS} = 0$ is 4 millimho, find the pinch off voltage.

8

OR

4 (a) Sketch the structure of n-channel depletion type MOSFET. Explain how the depletion region is produced in the channel. Can a depletion MOSFET work in the enhancement mode?

8

(b) An n-channel enhancement mode MOSFET, biased as shown in Fig. operates in the active region. The given parameters are V_T = 2V and K = 0.5 mA/V². Calculate I_D, V_{GS} and V_{DS} verify that the operation is indeed in the active region.

8

UNIT - V

5 (a) An RC coupled amplifier employs two identical transistors, each having $h_{fe} = 100$, $h_{ie} = 2k\Omega$ and $C_{of} = 2PF$. The coupling capacitor has a capacitance $C = 0.4 \ \mu F$. The load resistance for each transistor is $R_L = 8 \ k\Omega$. The wiring capacitance $C_W = 10 \ PF$, calculate the lower and upper half power frequencies.

8

(b) Obtain an expression for the voltage gain of an R-C coupled amplifier in the mid, low and high frequency ranges.

8

OR

3E1641 |

6

5 (a) Draw the circuit diagram of a common source in channel JFET amplifier.

Discuss its small signal operation.

10

(b) What is the Darlington connection, compare between an emitter follower and a darlington pair ?

6

3E1641] 7 [16000]